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A model for predicting invasive weed and grass dynamics.
I. Model development1,2
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Invasive weed managers are presented with a complicated and ever-enlarging set of
management alternatives. Identifying the optimal weed management strategy for a
given set of conditions requires predicting how candidate strategies will affect plant
community composition. Although field experiments have advanced our ability to
predict postmanagement composition, extrapolation problems limit the prediction
accuracy achieved by interpreting treatment means as predictions. Examples of ex-
trapolation problems include nonlinear relationships between competing plants, site-
to-site variation in plant population growth rates, and the carrying capacities of
desired species and weeds. Our objective was to develop a model that improves
predictions of weed management outcomes by overcoming a subset of these prob-
lems. To develop the model, we used data from two field experiments in which four
Kentucky bluegrass, six western wheatgrass, and six invasive plant (i.e., leafy spurge)
densities were combined in field plots. Graphs of our model’s predictions vs. observed
field experiment data indicate that the model predicted the data accurately. Our
model may improve predictions of plant community response to invasive weed man-
agement actions.

Nomenclature: Leafy spurge, Euphorbia esula L. EPHES; spotted knapweed, Cen-
taurea maculosa Lam. CENMA; Kentucky bluegrass, Poa pratensis L. POAPR; west-
ern wheatgrass, Pascopyrum smithii Rydb.

Key words: Competition model, population dynamics, demography.

Competition by nonnative dicotyledonous weeds such as
spotted knapweed (Centaurea maculosa Lam.) and leafy
spurge (Euphorbia esula L.) has depleted grass populations
on millions of hectares of grasslands in North America and
elsewhere (DiTomaso 2000; Kroon et al. 1987; Lym and
Tober 1997; Sheley et al. 2000). Federal agencies, ranchers,
and other land managers are currently attempting to restore
grasses by removing weeds with introduced biological con-
trol agents, grass seeding, herbicides, sheep and goat grazing,
and other strategies (Ferrell et al. 1998; Kirby et al. 2000;
Lym 2000; Lym et al. 1997; Sheley et al. 2001). Questions
often arise as to which strategies to use, when and how to
use them, and how grasses and invasive plants will respond
to their use.

To answer these questions, managers interpret treatment
responses from experiments as predictions of how the real-
world grasslands under their care will respond to the same
treatments (Ferrell et al. 1998; Kirby et al. 2000; Lym et al.
1997; Rinella et al. 2001). Seven extrapolation problems can
render these predictions tenuous:

1. Nonlinearity: Plant competitive relationships are very of-
ten nonlinear (Buchanan et al. 1980; Coble and Ritter
1978; Gaudet and Keddy 1988; Goldberg 1987; Moo-

1 Experiments were conducted while the authors were at the Department
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2 Mention of a proprietary product does not constitute a guarantee or
warranty of the product by the USDA, the Montana AES, or the authors
and does not imply its approval to the exclusion of other products that
may also be suitable. The USDA-ARS, Northern Plains Area, is an equal
opportunity/affirmative action employer. All agency services are available
without discrimination.

lani et al. 1964). If relationships between weeds and de-
sired species are nonlinear, reducing weed density by a
given amount at a research site and a management unit
will result in a similar increase in grass production at
both locations only when preremoval densities are simi-
lar. If competitive relationships are highly nonlinear, lin-
ear corrections for preremoval differences in weed den-
sities will provide very misleading predictions.

2. Carrying Capacity: Equilibrium grass and invasive weed
biomass production vary dramatically from site to site,
so experiments will provide erroneous predictions unless
experiment results are somehow rescaled to match pro-
ductivity attributes within management units (Figure 1).

3. Species: One invasive species can invade a variety of hab-
itats and coexist with a multitude of grass species (Fay
et al. 1991; Sheley et al. 2000), but experiments evaluate
management strategies in areas containing only a subset
of the possible grasses.

4. Efficacy: The impact of herbicides, biological controls,
and other strategies on invasive weed populations varies
by site and year, as does the impact of grass seeding on
grass populations (Call and Roundy 1991; Clark et al.
2001; Kirby et al. 2000; Kronberg and Walker 1999;
Lym and Messersmith 1985; Lym and Tober 1997; Ro-
bocker et al. 1965; Velagala et al. 1997).

5. Competition: The intensity of plant competition can vary
from site to site and year to year, which makes it difficult
to predict how invasive weeds will respond to grass seed-
ing and how grasses will respond to weed removal (Bri-
ones et al. 1998; Grime 2001; Keddy et al. 2000; Mo-
loney 1990).

6. Growth Rate: Growth rates of individual plants and plant
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FIGURE 1. Leafy spurge and grass biomasses in the northwestern United
States (Hein 1988; Kirby et al. 2000; Lym and Kirby 1987; Maxwell 1984;
K. K. Sedivec, unpublished data). Unique symbol types denote sites, and
individual symbols of a given type represent data from different years. Data
from herbicide-treated plots and grazed plots are excluded.

populations vary temporally and spatially, which com-
plicates attempts to predict dynamics that occur after a
management strategy is applied but before a community
equilibrates to the management-induced disturbance
(Grime and Hunt 1975). Predicting these transient dy-
namics is important because some forms of management
(e.g., herbicides) are reapplied whenever weeds recover
from previous applications. The transient dynamics de-
termine how often management will need to be applied.

7. Random Error: The intensity and frequency of factors
that are not explicitly studied in invasive weed experi-
ments (e.g., grasshopper herbivory, hailstorms) vary spa-
tially and temporally. Therefore, estimates of random er-
ror (i.e., prediction confidence) at one site may not ac-
curately depict prediction confidence at other sites.

We present a model that describes interactions between
perennial grasses and an invasive forb (i.e., leafy spurge).
Our primary objective in developing this model was to di-
minish prediction error caused by the described nonlinearity,
carrying capacity, and species problems. These problems are
probably the least data-intensive to solve and could be im-
portant sources of prediction error.

A secondary objective was to quantify prediction uncer-
tainty caused by the extrapolation problems and random
error. Thus, we represent the extrapolation problems and
random error as features of our model. Future research could
quantify how the model parameters vary, which would es-
timate prediction uncertainty. We present asymptotic stan-
dard errors of the parameters, and these error terms provide
some insight into the magnitude of spatial and temporal
parameter variation.

Leafy spurge was used for this research because of its eco-
logical and economic importance and because there are ex-
tensive data on this species. Leafy spurge is a rhizomatous
perennial weed that infests approximately 1.2 million ha in
the United States (Lajeunesse et al. 1999). Western wheat-
grass (Pascopyrun smithii Rydb.) and Kentucky bluegrass
(Poa pratensis L.) were used for this study because they com-
monly grow in association with leafy spurge (Nowierski and
Harvey 1988). Western wheatgrass and Kentucky bluegrass
are rhizomatous perennial grasses that occur in rangeland
ecosystems of the western United States and Canada (Taylor
and Lacey 1994).

Materials and Methods

Study Site
Two experiments were conducted 6.5 km west of Boze-

man, MT, at the Montana State University Arthur H. Post
Research Farm (458419N, 111899W). The elevation at the
site is 1,463 m, the average annual precipitation is 457 mm,
and the soil is an Amsterdam silt loam (fine-silty, mixed,
frigid Typic Haplustolls). Because the site was previously
used for agronomic research, it was tilled each year for many
years prior to the initiation of our study.

Experimental Design
In Experiment 1, four Kentucky bluegrass and six western

wheatgrass seeding rates and six leafy spurge seedling den-
sities were combined in 1- by 1-m plots in every possible
density combination (4 3 6 3 6 5 144 plots). This design
is typically referred to as an addition series (Spitters 1983).
Immediately prior to grass seeding, strips of grass sod (1 m
wide) were laid around the plots to eliminate unrealistic
growing conditions that would result from leaving plot bor-
ders bare. To better approximate target Kentucky bluegrass
(0, 156, 1,250, and 10,000 plants m22) and western wheat-
grass (0, 156, 312, 1,250, 5,000, and 10,000 plants m22)
densities, seeding rates were adjusted using seedling emer-
gence ratios that were estimated in a greenhouse. Grass seed-
ing treatments were randomly assigned, and seeds were uni-
formly spread over plots and covered with approximately 2
mm of soil in early June 1998. Plots were periodically irri-
gated until grasses became established.

Leafy spurge seeds were collected near Bozeman, MT, in
August 1999. Seedlings were established and thinned to one
seedling per container (3 cm diam by 15 cm) in a green-
house in September 1999. Leafy spurge seedlings were ap-
proximately 10 cm tall by spring 2000. Six densities of leafy
spurge (0, 4, 9, 16, 25, and 36 seedlings m22) were planted
in plots a few days after glyphosate was applied as described
below. Glyphosate was applied at 1.6 kg ae ha21 to kill
grasses and thereby enhance survival of leafy spurge seed-
lings. Grasses were killed within 36 evenly spaced circular
areas (diam 5 6.35 cm) in each plot in May 2000. Seedlings
were evenly spaced within the center of areas that had re-
ceived glyphosate application. A pointed steel rod was used
to make holes to accommodate seedlings, and soil was
packed around seedlings by hand.

Experiment 2 was located about 50 m away from Exper-
iment 1, and leafy spurge was established prior to grasses in
this experiment. Experiment 2 was conducted because of
concerns that leafy spurge might invade the dense grass
stands of Experiment 1 very slowly, which would have pre-
vented us from studying the leafy spurge densities typically
found in naturally occurring infestations. Leafy spurge seed-
lings were planted with uniform spacing at densities of 0,
4, 9, 16, 49, and 64 seedlings m22 in May 2000. Grasses
were established in August 2000 using the methods and
seeding rates of Experiment 1.

Plant Measurements
Plant data were collected when repeated height measure-

ments over time indicated that summer growth had ceased.
Leafy spurge was measured in early September 2000, and
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grasses and leafy spurge were measured in late August 2001
and 2002. Grasses were measured by clipping at ground
level, separating by species, drying to a constant weight at
50 C, and weighing. Two 15- by 15-cm quadrats were per-
manently marked (one in the center of the southwest quar-
ter of plots and the other in the center of the northeast
quarter) at the beginning of the experiments, and grasses in
these quadrats were measured in 2001 and 2002. (An anal-
ysis that is not presented indicated that grass clipping in
2001 did not influence 2002 grass production.) Grass bio-
mass outside the 15- by 15-cm quadrats was also measured
in 2002 (except for the peripheral 15 cm, because of possible
edge effects). It was prohibitively time-consuming to sepa-
rate all grass biomass by species in plots containing large
quantities of both western wheatgrass and Kentucky blue-
grass. Therefore, in 2002, grasses from 49% of the plots in
Experiment 1 and 36% of the plots in Experiment 2 were
thoroughly hand mixed, and three samples (dry weight 5
ø15 g per sample) were sorted and used to estimate grass
biomass by species. Summed lengths of leafy spurge stems
per square meter (hereafter referred to as stem length den-
sity) were used to quantify leafy spurge abundances, as op-
posed to biomass, because clipping alters the subsequent
growth of this species (Kirby et al. 1997).

Analysis

We evaluated models that predict leafy spurge stem length
density and grass biomass. The models have the following
terms:

w 5 f (w , g , a, r , w , k , s ) [1]t11 t t11 w max t ,w«

g 5 f (g , w , b, r , g , s ) [2]t11 t t g max ,g«

The predictor and response variables are leafy spurge stem
length density (w 5 weed) and grass biomass (g) at the
cessation of plant growth in years t and t 1 1. The param-
eters are leafy spurge (rw) and grass (rg) population growth
rates, leafy spurge (wmax) and grass (gmax) carrying capaci-
ties, the impact of grass on leafy spurge population growth
(a), the impact of leafy spurge on grass population growth
(b), the impact of leafy spurge management on leafy spurge
population growth (k), and random error variances (se,w
and se,g).

Using grass at t 1 1 to predict leafy spurge at t 1 1
permitted data from an additional time step to be used in
estimating parameters of the leafy spurge equation. The use-
fulness of the models is not affected by modeling in terms
of future plant abundances because, after simulating gt11,
the simulated grass value can be used to simulate wt11.

The models deal with the carrying capacity problem by
acknowledging that wmax and gmax vary temporally and spa-
tially. By measuring small quadrats in sites that are at equi-
librium, managers can site-specifically estimate these param-
eters and thereby partially overcome the carrying capacity
problem.

Our model will address the species problem if the per-
unit-biomass impacts of grasses on leafy spurge (a) and the
per-unit-stem length density impacts of leafy spurge on
grasses (b) are similar for all perennial grass species that
coexist with leafy spurge. Several studies support the asser-
tion that per-unit-abundance competitive effects are similar
among coexisting species (Aguiar et al. 2001; Gaudet and

Keddy 1988; Goldberg 1987; Mitchell et al. 1999; Peltzer
and Kochy 2001), and a greenhouse study supports this
assertion specifically for leafy spurge and perennial grasses
(Rinella and Sheley 2005a). Species-specific grass terms were
evaluated in leafy spurge equations to determine if predic-
tion accuracy was compromised by combining grasses (i.e.,
g 5 western wheatgrass biomass plus Kentucky bluegrass
biomass).

The competition problem can be managed by the model
by defining a and b as random variables, as opposed to fixed
parameters, and the same is true of the growth rate r’s and
random error s«’s problems. Nonlinear models that follow
Equations 1 and 2 were tested so that the nonlinearity prob-
lem would be addressed if it proved salient in this system.

The kt parameter represents the reduction in leafy spurge
stem length density caused by a management action during
year t. The efficacy problem is dealt with by defining kt as
a random variable. Some management strategies, such as
environmentally persistent herbicides, will reduce leafy
spurge abundances beyond the year of application (Lym and
Messersmith 1994). In these cases, kt11, kt12 . . . kt1n could
be included. Other strategies, such as biological control or
repeated sheep grazing, quasi-permanently reduce leafy
spurge stem length densities, in which case management can
be modeled as a decrease in wmax (Kirby et al. 2000; Landg-
raf et al. 1984; Olson and Wallander 1998). Seeding can
cause long-term increases in grass production, which could
be handled by manipulating gmax (Lym and Tober 1997;
Masters and Nissen 1998).

Jackknife cross-validation was used to characterize the
predictive capabilities of several models (Efron and Tibshir-
ani 1993; Hjorth 1994). The jackknife procedure entailed
deleting one plot’s data and then using a regression routine
to minimize the sum of squared errors; we used the Inter-
national Mathematical and Statistical Library subroutine
DRNLIN (Visual Numerics 1997). Models and deleted pre-
dictor data were then used to predict deleted response data,
and the squared residuals were calculated. The procedure
was automated using FORTRAN 6.6.a (Compaq Computer
Corporation 2000) and was repeated for each plot’s data.
To calculate the jackknife mean-square error (JMSE), the
sum of squared residuals was divided by the number of data
points.

Models can be highly unrealistic and still have low JMSEs
(i.e., they can still accurately predict the range of data used
in model development). But, when models are unrealistic
(e.g., have biologically implausible parameter estimates),
they can inaccurately predict data not used in model devel-
opment. Scatter plots, isocline plots, and least-squares pa-
rameter estimates were used to characterize the realism of
models, and models were dropped from consideration if
they had unrealistic isoclines or parameter estimates.

Results and Discussion

We assumed error variances to be log-normally distrib-
uted in estimating parameters, calculating JMSEs, and eval-
uating models because scatter plots indicate that means and
standard deviations of plant abundances are positively relat-
ed (Figure 2) (Hilborn and Mangel 1997). We first evalu-
ated the two-species Ricker equation (Ricker 1954) and the
two-species logistic equation (Pearl and Reed 1920) (Table
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FIGURE 2. Means and standard deviations of leafy spurge (A) and grass (B)
abundances from individual field plots that were measured annually. Leafy
spurge data were collected in 2000, 2001, and 2002, while grass biomass
data were collected in 2001 and 2002. The positive relationships between
means and standard deviations justify the assumption that error variances
are log-normally distributed.
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1), two widely used discrete-time population dynamics
equations. Experiment 2 plots produced substantially more
leafy spurge stem length and grass biomass than did Exper-
iment 1 plots (Figure 3), which prompted us to evaluate ex-
periment-specific growth rate, competition, and carrying capac-
ity parameters. Site-specific terms were included in the Ricker
equation, for example, as follows (see Haining 1990):

w 1 ag 1 a sgt t11 s t11w 5 w exp (r 1 r s)· 1 2 [3]t11 t w w,s 1 2[ ]w 1 w smax max,s

g 1 bw 1 b swt t s tg 5 g exp (r 1 r s)· 1 2 [4]t11 t g g,s 1 2[ ]g 1 g smax max,s

The s term is a dummy variable that takes on the values 0
and 1 for Experiments 1 and 2, respectively. Therefore, the
parameters rw,s, rg,s, bs, as, wmax,s, and gmax,s adjust rw, rg,
b, a, wmax, and gmax, if necessary, to better reflect parameter
values for Experiment 2. Adding experiment-specific carry-
ing capacity parameters (i.e., gmax,s and wmax,s) reduced
JMSEs, but adding other experiment-specific terms did not.
The parameter estimates and fit statistics of Table 1 were
derived after including gmax,s and wmax,s in all equations. The
least-squares estimates of gmax,s and wmax,s are listed in Table
1, but for ease of explanation, these terms are not depicted
in the equations of Table 1 or in any of the equations that
follow.

Grass species-specific terms were added to leafy spurge
equations to assess how grouping western wheatgrass and
Kentucky bluegrass affected prediction accuracy. Species-
specific terms were added to the Ricker equation, for ex-
ample, as follows:

w 1 a g 1 a gt 1 1,t11 2 2,t11w 5 w exp r 1 2 [5]t11 t w1 2[ ]wmax

Competition parameters (a) and grass terms (g) subscripted
with the number 1 represent western wheatgrass, and those
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FIGURE 3. Means (bars) and standard deviations (numbers above bars) of
grass biomasses and leafy spurge stem length densities from Post Farm ex-
periments. Grasses, though present in 2000, were not measured.

subscripted with the number 2 represent Kentucky blue-
grass. Leafy spurge equations with species-specific grass
terms had slightly larger JMSEs than equations in which
grass biomasses were grouped and multiplied by a single
competition parameter. It appears that western wheatgrass
and Kentucky bluegrass compete similarly with leafy spurge
on a per-unit-biomass basis, and including species-specific
parameters caused ‘‘overfitting.’’ However, because some per-
species grass weights were estimated from subsamples, as
opposed to being directly measured, measurement error may
have unduly inflated the JMSEs of grass species–specific
equations.

The logistic equation has a considerably larger JMSE than
the Ricker equation, and the Experiment 2 estimate of gmax
for the logistic equation is unrealistically large (Table 1). The
Ricker equation predicts the data accurately (i.e., has a small
JMSE), but scatter plots and plots of zero-growth isoclines
suggest that both the Ricker and logistic equations are un-
satisfactory. Both equations reduce to the following zero-
growth isoclines at equilibrium (i.e., when wt11 5 wt or gt11
5 gt):

w 5 w 2 ag [6]max

g 5 g 2 bw [7]max

These isoclines predict that grasses and leafy spurge are lin-
early related (Figures 4A–D), while a scatter plot of grass
vs. leafy spurge abundances clearly indicates a curvilinear
relationship (Figure 5). Also, the parameter estimates of the
Ricker and logistic equations for Experiment 1 meet the
following conditions: gmax , wmax/a and wmax . gmax/b,
which, as can be shown by plotting isoclines, predict that
grass will become extinct. The prediction that leafy spurge
causes local grass extinction is probably unrealistic because,
in a meta-analysis of data from 60 leafy spurge–infested sites
(data not shown), grasses were present at all sites. Further-
more, parameter estimates of the logistic equation for Ex-
periment 2 predict that leafy spurge will become extinct.
This prediction appears unrealistic because, in spite of ex-

tensive control efforts, leafy spurge coexists with Kentucky
bluegrass and western wheatgrass at sites very similar to, and
within 10 km of, our research sites.

The theta-Ricker equation is often used when linear zero-
growth isoclines are unrealistic (Turchin 2003). The theta-
Ricker structure of a grass equation, for example, is given
by:

g 5 g exp (r 1 r s)· 1t11 t g g,s5 [
u(g 1 bw 1 b sw )t t s t2 [8]6]g 1 g smax max,s

The shape parameter u allows for curvature in the zero-
growth isocline. Convergence problems and highly unreal-
istic parameter estimates resulted from attempts to fit the
theta-Ricker equation to our data, which led us to believe
that the data contained too much random variation and that
the sample size was insufficient to accurately estimate the
parameters of five-parameter equations (e.g., rg , b, gmax,
gmax,s, u).

In an effort to develop accurate and realistic four-param-
eter equations with curvilinear isoclines, we evaluated two
Ricker-like equations that reduce to published curvilinear
plant competition models at equilibrium. We refer to these
equations as ln-Ricker (natural log-Ricker) and Watkinson–
Ricker equations (Table 1). The ln-Ricker equation reduces
to the following leafy spurge and grass zero-growth isoclines
at equilibrium (Figures 4A–D):

ln(w) 5 ln(w ) 2 ag [9]max

ln(g) 5 ln(g ) 2 bw [10]max

Gaudet and Keddy (1988) used this form to model plant
competition between wetland plants. The ln-Ricker equa-
tion was dropped from consideration because fitted wmax
and gmax values were unrealistically large (Table 1).

The Watkinson–Ricker equation reduces to the following
zero-growth isoclines (Figure 4):

21w 5 w (1 1 ag) [11]max

21g 5 g (1 1 bw) [12]max

These isoclines have been used to predict individual plant
weights (Goldberg 1987; Watkinson 1981). The JMSEs of
the Watkinson–Ricker equation are similar to, or smaller
than, the JMSEs of the other equations, and parameter es-
timates of this equation are realistic (Table 1). The zero-
growth isoclines of the Watkinson–Ricker equations predict
the equilibrium coexistence of grasses and leafy spurge in
Experiments 1 and 2 (Figures 4E and F), and this prediction
is consistent with our experiences with leafy spurge in grass-
land environments. However, whether or not equilibriums
occur in nature, and the position of these equilibriums, de-
pends on the intensity and frequency of factors that cause
zero-growth isocline parameters to vary (e.g., variation in
the physical environment and herbivory) (Huston 1979; Sil-
vertown and Charlesworth 2001). We believe the Watkin-
son–Ricker equation is superior to the other equations we
evaluated. Collectively, we refer to the Watkinson–Ricker
equations for predicting grass and leafy spurge abundances
as the Watkinson–Ricker model. Figure 6 depicts the fit of
this model to our data.
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FIGURE 4. Zero-growth isoclines of equations that predict leafy spurge and grass abundances. Zero-growth isoclines of leafy spurge (A, B) and grass (C, D)
equations for low (Post Farm Experiment 1) and high (Post Farm Experiment 2) productivity sites. Zero-growth isoclines of the Watkinson–Ricker model
depicting equilibriums at low (Experiment 1) (E) and high (Experiment 2) (F) productivity sites.

FIGURE 5. Leafy spurge and grass abundances in plots of two field experi-
ments. All data were collected from Post Farm Experiments 1 and 2 during
2002.

Summary

Assessing management strategies is the goal of much in-
vasive weed research. One of the main challenges in assessing
management strategies has been that the impacts of strate-
gies depend on the site. In part, this site-dependence is a
consequence of spatially varying plant carrying capacities
(Figure 1) and nonlinear competitive relationships (Figure

5). Our model may improve site-specific assessments (i.e.,
predictions) of weed management strategies because it cor-
rects for nonlinear relationships and site-specific carrying ca-
pacities. At sites that are at equilibrium, managers could site-
specifically estimate carrying capacities by measuring small
quadrats and inserting the measured data into versions of
Equations 11 and 12 that have been solved for wmax and
gmax.

Our model may sufficiently alleviate the species problem
in leafy spurge–infested grasslands because it expresses grass
population sizes in units of biomass and leafy spurge pop-
ulation sizes in units of stem length density, which is highly
correlated with leafy spurge biomass. Accumulating evidence
indicates that per-unit-biomass competitive effects are sim-
ilar across species within a community (Aguiar et al. 2001;
Goldberg 1987; Mitchell et al. 1999; Peltzer and Kochy
2001; Rinella and Sheley 2005a), and constructing separate
terms for Kentucky bluegrass and western wheatgrass did
not improve the predictive capabilities of the Watkinson–
Ricker model. If between-species variation in competitive
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FIGURE 6. Predicted and observed leafy spurge and grass abundances. Leafy
spurge stem length density (w) was measured in 2000, 2001, and 2002,
and grass biomass (g) was measured in 2001 and 2002 in Post Farm Ex-
periments 1 and 2. Parameters describe leafy spurge (rw) and grass (rg)
intrinsic rates of increase, leafy spurge (wmax) and grass (gmax) carrying
capacities, the impact of leafy spurge on grass production (b), and the
impact of grass on leafy spurge production (a).

effects is due to between-species patterns in plant weight or
size, our model will alleviate the species problem.

Some theorists believe the competition problem could be
partially alleviated by expressing competition terms as in-
creasing functions of habitat productivity (Grime 2001;
Keddy 2001). Conflicting theories assert that these func-
tions are unnecessary because competition intensity does not
vary with productivity (Newman 1973; Wilson and Tilman
1991). Other than correcting for competition–productivity
relationships, or maybe a few other easily quantifiable rela-
tionships, models are not likely to reduce the severity of the
competition problem. Studying variables that cause com-
petition to vary would require rigorous, and thus costly, ex-
perimentation, and a large number of variables may be re-
sponsible for temporal and spatial variation in competition
intensity. Similar statements are true of the growth rate, ran-
dom error, and efficacy problems. By representing these
problems as model parameters, we have made progress to-
ward quantifying prediction uncertainty, because quantify-
ing temporal and spatial variation in model parameters will
quantify prediction uncertainty. Invasive weed management
decisions are based on predicted plant community dynam-
ics. Models may improve our ability to predict dynamics,
but regardless of how sophisticated the models become, pre-
diction uncertainty will remain. Estimates of the magnitude
of the prediction uncertainty will be important to sound
decision making.

Conclusive tests of our model’s ability to overcome ex-
trapolation problems and predict weed management out-
comes will require that our model be subjected to tests using
independent data (i.e., data not used in model develop-
ment). These tests are the focus of a companion paper (Ri-
nella and Sheley 2005b).
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